Module I

- Introduction to Algorithm Analysis
 - o Characteristics of Algorithms
 - Criteria for Analysing Algorithms
 - Time and Space Complexity
 - Best, Worst and Average Case Complexities
 - Asymptotic Notations
 - Big-Oh (O), Big-Omega (Ω), Big-Theta (Θ), Little-oh (o) and Little-Omega (ω) and their properties.
 - Classifying functions by their asymptotic growth rate
 - Time and Space Complexity Calculation of simple algorithms
 - Analysis of Recursive Algorithms:
 - Recurrence Equations
 - Solving Recurrence Equations
 - Iteration Method
 - Recursion Tree Method
 - Substitution method
 - Master's Theorem
- Algorithm: An algorithm is a finite set of instructions that accomplishes a particular task.
- Characteristics of an Algorithm
 - Input: Zero or more inputs are externally supplied.
 - Output: At least one output is produced.
 - o **Definiteness:** Each instruction is clear and unambiguous.
 - "add 6 or 7 to x", "compute 5/0" etc. are not permitted.
 - **Finiteness:** The algorithm terminates after a finite number of steps.
 - Effectiveness: Every instruction must be very basic so that it can be carried out by a person using only
 pencil and paper in a finite amount of time. It also must be feasible.

Computational Procedures

- Algorithms those are definite and effective.
- Example: Operating system of a digital computer. (When no jobs are available, it does not terminate but continues in a waiting state until a new job is entered.)
- Program: It is the expression of an algorithm in a programming language

Recursive Algorithms

- A recursive function is a function that is defined in terms of itself.
- An algorithm is said to be recursive if the same algorithm is invoked in the body.
- Two types of recursive algorithms
 - 1. **Direct Recursion**: An algorithm that calls itself is direct recursive.
 - 2. **Indirect Recursion**: Algorithm A is said to be indirect recursive if it calls another algorithm which in turn calls A.
- Performance Analysis(Criteria for Analysing Algorithms)
 - Performance analysis depends on Space Complexity and Time Complexity
 - Space Complexity
 - The space complexity of an algorithm is the amount of memory it needs to run to completion
 - Space Complexity = Fixed Part + Variable Part
 - $S(P) = c + S_P$, Where P is any algorithm

- 1. A fixed part:
 - It is independent of the characteristics of the inputs and outputs.
 - Eg:
 - Instruction space(i.e., space for the code)
 - space for simple variables and fixed-size component variables
 - space for constants
- 2. A variable part:
 - It is dependent on the characteristics of the inputs and outputs.
 - Eg:
 - Space needed by component variables whose size is dependent on the particular problem instance being solved
 - Space needed by referenced variables
 - Recursion stack space.

Time Complexity

- The time complexity of an algorithm is the amount of computer time it needs to run to completion.
 Compilation time is excluded.
- Time Complexity = Frequency Count * Time for Executing one Statement
- Frequency Count → Number of times a particular statement will execute

Eg1: Find the time and space complexity of matrix addition algorithm

	Step/Execution	Frequency Count	Total Frequency Count
Algorithm mAdd(m,n,a,b,c)	0	0	0
{	0	0	0
for i=1 to m do	1	m+1	m+1
for j=1 to n do	1	m(n+1)	mn+m
c[i,j] := a[i,j] + b[i,j];	1	mn	mn
}	0	0	0
			2mn + 2m +1

Time Complexity = 2mn + 2m + 1

Space Complexity = Space for parameters and Space for local variables $m \rightarrow 1$ $n \rightarrow 1$ $a[] \rightarrow mn$ $b[] \rightarrow mn$ $c[] \rightarrow mn$ $i \rightarrow 1$ $j \rightarrow 1$ **Space complexity = 3mn + 4**

Eg2: Find the time and space complexity of recursive sum algorithm

	Step/Execution	Frequency Count		Total Frequency Count		
		n≤0	n>0	n≤0	n>0	
Algorithm RSum(a,n)	0	0	0	0	0	
{	0	0	0	0	0	
if $n \le 0$ then	1	1	1	1	1	
return 0	1	1	0	1	0	
Else	0	0	0	0	0	
return a[n] + RSum(a,n-1)	1 + T(n-1)	0	1	0	1 + T(n-1)	
}	0	0	0	0	0	
				2	2 + T(n-1)	

Time Complexity = T(n) =
$$\begin{cases} 2 & \text{if } n <= 0 \\ 2 + T(n-1) & \text{Otherwise} \end{cases}$$

T(n) = 2 + T(n-1) = 2 + 2 + T(n-2) = 2 + 2 + 2 + T(n-3)

```
=2x3 + T(n-3)

=2xn + T(n-n)

=2n + 2
```

Space Complexity = Space for Stack

= Space for parameters + Space for local variables + Space for return address

For each recursive call the amount of stack required is 3

```
Space for parameters: a→1 n→1

Space for local variables: No local variables

Space for return address: 1
```

Total number of recursive call = n+1

Space complexity = 3(n+1)

• Examples:

1. Discuss the time complexity of the following two functions

```
 \begin{array}{ll} \text{int fun1(int n)} \\ \{ & \text{if(n } \! \leq \! 1) \\ & \text{return n;} \\ & \text{return 2xfun1(n-1);} \\ \} \\ & \text{int fun2(int n)} \\ \{ & \text{if(n } \! \leq \! 1) \\ & \text{return n;} \\ & \text{return fun2(n-1)xfun2(n-1);} \\ \} \\ \end{array}
```

2. Analyze the complexity of the following program

3. Analyse the complexity of the following function

4. Analyse the complexity of the following functions

```
void function(int n)
                 int i=1; s=1;
                 while(s \le n)
                          i++:
                          s+=i;
                          printf("*");
5. Express the return value of the function "mystery" in \Theta notation
         int mystery(int n)
                 int j=0,total=0;
                 for (int i=1;j <=n;i++)
                          ++total;
                          i+=2*i;
                 return total;
6. Consider the following C function
        int check(int n)
             int i,j;
             for (i=1;i<=n;i++)
                      for (j=1; j < n; j+=i)
                              printf("%d",i+j);
             }
    Find the time complexity of check in terms of \Theta notation
```

- 7. Write an algorithm to find sum of elements of an array. Find time and space complexity.
- 8. Write an algorithm to find nth Fibonacci number. Find time and space complexity.
- 9. Write an algorithm to find 2^k using recursion. Find time and space complexity
- 10. Write an algorithm to return largest element from an array. Find time and space complexity
- 11. Write an algorithm to find factorial of a number using recursion. Find time and space complexity
- 12. Write an algorithm for Bubble sort. Find time and space complexity
- 13. Write an algorithm for Insertion sort. Find time and space complexity
- 14. Write an algorithm for Selection sort. Find time and space complexity

Best Case, Worst Case and Average Case Complexity

- In certain case we cannot find the exact value of frequency count. In this case we have 3 types of frequency counts
 - 1. Best Case: It is the minimum number of steps that can be executed for a given parameter
 - 2. Worst Case: It is the maximum number of steps that can be executed for a given parameter
 - 3. Average Case: It is the average number of steps that can be executed for a given parameter
- Example: Linear Search
 - 1. Best Case: Search data will be in the first location of the array.
 - 2. Worst Case: Search data does not exist in the array
 - 3. Average Case: Search data is in the middle of the array.

	Best Case			V	Vorst C	Average Case			
	S/E	FC	TFC	S/E	FC	TFC	S/E	FC	TFC
Algorithm Search(a,n,x)	0	0	0	0	0	0	0	0	0
{	0	0	0	0	0	0	0	0	0
for i:=1 to n do	1	1	1	1	n+1	n+1	1	n/2	n/2
if $a[i] ==x$ then	1	1	1	1	n	n	1	n/2	n/2
return i;	1	1	1	1	0	0	1	1	1
return -1;	1	0	0	1	1	1	1	0	0
}	0	0	0	0	0	0	0	0	0
			3			2n + 2			n+1

Best Case Complexity = 3
Worst Case Complexity = 2n + 2
Average Case Complexity= n+1

Example:

Asymptotic Notations

• It is the mathematical notations to represent frequency count. 5 types of asymptotic notations

1. **Big Oh (O)**

- The function f(n) = O(g(n)) iff there exists 2 positive constants c and n_0 such that $0 \le f(n) \le c$ g(n) for all $n \ge n_0$
- It is the measure of longest amount of time taken by an algorithm(Worst case).
- It is asymptotically tight upper bound
- O(1): Computational time is constant
- O(n): Computational time is linear
- $O(n^2)$: Computational time is quadratic
- O(n³): Computational time is cubic
- O(2ⁿ): Computational time is exponential

2. **Omega** (Ω)

- The function $f(n) = \Omega$ (g(n)) iff there exists 2 positive constant c and n₀ such that $f(n) \ge c$ g(n) ≥ 0 for all $n \ge n_0$
- It is the measure of smallest amount of time taken by an algorithm(Best case).
- It is asymptotically tight lower bound

3. Theta (Θ)

- The function $f(n) = \Theta(g(n))$ iff there exists 3 positive constants c_1 , c_2 and n_0 such that $0 \le c_1$ $g(n) \le f(n) \le c_2$ g(n) for all $n \ge n_0$
- It is the measure of average amount of time taken by an algorithm(Average case).

4. Little Oh (o)

- The function f(n) = o(g(n)) iff for any positive constant c>0, there exists a constant $n_0>0$ such that $0 \le f(n) < c$ g(n) for all $n \ge n_0$
- It is asymptotically loose upper bound

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

g(n) becomes arbitrarily large relative to f(n) as n approaches infinity

5. **Little Omega (ω)**

- The function $f(n) = \omega(g(n))$ iff for any positive constant c>0, there exists a constant n_0 >0 such that f(n) > c $g(n) \ge 0$ for all $n \ge n_0$
- It is asymptotically loose lower bound

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

f(n) becomes arbitrarily large relative to g(n) as n approaches infinity

Examples:

1. Find the O notation of the following functions

a)
$$f(n) = 3n + 2$$

 $3n + 2 \le 4 n$ for all $n \ge 2$
Here $f(n) = 3n + 2$ $g(n) = n$ $c = 4$ $n_0 = 2$
Therefore $3n + 2 = \mathbf{O}(\mathbf{n})$

b)
$$f(n) = 4n^3 + 2n + 3$$

 $4n^3 + 2n + 3 \le 5 n^3$ for all $n \ge 2$
Here $f(n) = 4n^3 + 2n + 3$ $g(n) = n^3$ $c = 5$ $n_0 = 2$
Therefore $4n^3 + 2n + 3 = \mathbf{O}(\mathbf{n}^3)$

c)
$$f(n) = 2^{n+1}$$

 $2^{n+1} \le 2 \ 2^n$ for all $n \ge 1$
Here $f(n) = 2^{n+1}$ $g(n) = 2^n$ $c = 2$ $n_0 = 1$
Therefore $2^{n+1} = \mathbf{O}(2^n)$

d)
$$f(n) = 2^n + 6n^2 + 3n$$

 $2^n + 6n^2 + 3n \le 7 \ 2^n$ for all $n \ge 5$
Here $f(n) = 2^n + 6n^2 + 3n$ $g(n) = 2^n$ $c = 7$ $n_0 = 5$
Therefore $2^n + 6n^2 + 3n = \mathbf{O}(2^n)$

- e) $f(n) = 10n^2 + 7$
- f) $f(n) = 5n^3 + n^2 + 6n + 2$
- g) $f(n) = 6n^2 + 3n + 2$
- h) f(n) = 100n + 6

2. Is
$$2^{2n} = O(2^n)$$
?
 $2^{2n} \le c 2^n$

$$2^n \le c$$

There is no value for c and n₀ that can make this true.

 $2^{2n} != O(2^n)$ Therefore

3. Is
$$2^{n+1} = O(2^n)$$
?
 $2^{n+1} \le c \ 2^n$
 $2x2^n \le c \ 2^n$
 $2 \le c$
 $2^{n+1} \le c \ 2^n$ is True if $c=2$ and $n\ge 1$.
Therefore $2^{n+1} = O(2^n)$

- 4. What is the smallest value of n such that an algorithm whose running time is 100n² runs faster than an algorithm whose running time is 2ⁿ on the same machine?
- 5. Find the Ω notation of the following functions

Find the
$$\Omega$$
 notation of the following functions
a) $f(n) = 27 n^2 + 16n + 25$
 $27 n^2 + 16n + 25 \ge 27 n^2$ for all $n \ge 1$
Here $c=27$ $n_0=1$ $g(n)=n^2$
 $27 n^2 + 16n + 25 = \Omega(\mathbf{n}^2)$
b) $f(n) = 5 n^3 + n^2 + 3n + 2$
 $5 n^3 + n^2 + 3n + 2 \ge 5 n^3$ for all $n \ge 1$
Here $c=5$ $n_0=1$ $g(n)=n^3$
 $5 n^3 + n^2 + 3n + 2 = \Omega(\mathbf{n}^3)$
c) $f(n) = 3^n + 6n^2 + 3n$
 $3^n + 6n^2 + 3n \ge 5.3^n$ for all $n \ge 1$
Here $c=5$ $n_0=1$ $g(n)=3^n$
 $3^n + 6n^2 + 3n = \Omega(\mathbf{3}^n)$
d) $f(n) = 4 2^n + 3n$

- e) f(n) = 3n + 30
- f) $f(n) = 10 n^2 + 4n + 2$
- 6. Find the Θ notation of the following functions

a)
$$f(n) = 3n + 2$$

 $3n + 2 \le 4 n$ for all $n \ge 2$
 $3n + 2 \ge 3 n$ for all $n \ge 1$
 $3n + 2 \ge 3 n$ for all $n \ge 1$
 $3n + 2 = \Omega(n)$
b) $f(n) = 3 2^n + 4n^2 + 5n + 2$
 $3x^2 + 4n^2 + 5n + 2 \le 10x^2$ for all $n \ge 1$
 $3x^2 + 4n^2 + 5n + 2 \ge 3x^2$ for all $n \ge 1$
 $3x^2 + 4n^2 + 5n + 2 \ge 3x^2$ for all $n \ge 1$
 $3x^2 + 4n^2 + 5n + 2 \ge 0$ (2ⁿ)
 $3x^2 + 4n^2 + 5n + 2 \ge 0$ (2ⁿ)
 $3x^2 + 4n^2 + 5n + 2 \ge 0$ (2ⁿ)
 $3x^2 + 4n^2 + 5n + 2 \ge 0$ (2ⁿ)
 $3x^2 + 4n^2 + 5n + 2 \ge 0$ (2ⁿ)
c) $f(n) = 2n^2 + 16$
d) $f(n) = 27n^2 + 16$

```
7. Let f(n) and g(n) be asymptotically nonnegative functions. Using basic definition of \Theta notation
    prove that \max(f(n), g(n)) = \Theta(f(n) + g(n))
         f(n) \ge 0
                           g(n) \ge 0
         f(n) + g(n) \ge f(n)
         f(n) + g(n) \ge g(n)
         From the above two equations we can write
         f(n) + g(n) \ge max(f(n), g(n))
         \max(f(n), g(n)) \le 1. (f(n) + g(n))
                                                      where c=1
         \max(f(n), g(n)) = O(f(n) + g(n))
         \max(f(n), g(n)) \ge f(n)
         \max(f(n), g(n)) \ge g(n)
         Add the above 2 equations
         2. \max(f(n), g(n)) \ge f(n) + g(n)
         \max(f(n), g(n)) \ge (1/2)(f(n) + g(n))
                                                      where c=(1/2)
         \max(f(n), g(n)) = \Omega (f(n) + g(n))
         Now we can conclude that
                                             (1/2)(f(n) + g(n)) \le max(f(n), g(n)) \le 1. (f(n) + g(n))
         Here c_1=(1/2), c_2=1
         Therefore max(f(n), g(n)) = \Theta(f(n) + g(n))
8. Show that for any real constants a and b where b>0, (n+a)^b = \Theta(n^b)
         n + a \leq 2 n
                           for all n \ge |a|
         n + a \ge (1/2) n for all n \ge 2 |a|
         Combine above two equations
         (1/2) n \leq n + a \leq 2 n
                                             for all n \ge 2 |a|
        (1/2)^b n^b \le (n+a)^b \le 2^b n^b
                                             for all n \ge 2 |a|
        Here c_1 = (1/2)^b, c_2 = 2^{\frac{b}{b}} and n_0 \ge 2 |a|
         Therefore (n+a)^b = \Theta(n^b)
9. Let f(n) = 7n + 8 and g(n) = n. Is f(n) = o(g(n))?
         f(n) < c. g(n)
                          for all n \ge n_0
         7n + 8 < c.n
                           for all n \ge n_0
         If c = 8, then n_0 = 9
         If c = 1, then there is no n_0 value.
         As per o definition, for every c there should be corresponding n_0
         Therefore f(n)!=o(g(n))
10. Let f(n) = 7n + 8 and g(n^2) = n. Is f(n) = o(g(n))?
         f(n) < c. g(n)
                          for all n \ge n_0
         7n + 8 < c. n^2
                          for all n \ge n_0
         If c = 1, then n_0 = 9
         If c = 8, then n_0=2
         If c = 100, then n_0 = 3
         If c = 1/100, then n_0 = 800
         Now we can assume that for every c there is an n_0
         Therefore f(n)=o(g(n))
11. Theorem: If f(n) = a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0 and a_m > 0, then f(n) = O(n^m)
12. Theorem: If f(n) = a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0 and a_m > 0, then f(n) = \Omega(n^m)
13. Theorem: If f(n) = a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0 and a_m > 0, then f(n) = \Theta(n^m)
```

• Properties of Asymptotic Notations

- Reflexivity
 - 1. f(n) = O(f(n))
 - 2. $f(n) = \Omega(f(n))$
 - 3. $f(n) = \Theta(f(n))$
- Symmetry
 - 1. $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- Transpose Symmetry
 - 1. $f(n) = \mathbf{O}(g(n))$ if and only if $g(n) = \mathbf{\Omega}(f(n))$
 - 2. f(n) = o(g(n)) if and only if g(n) = o(f(n))
- Transitivity
 - 1. $f(n) = \mathbf{O}(g(n))$ and $g(n) = \mathbf{O}(h(n))$ imply $f(n) = \mathbf{O}(h(n))$
 - 2. $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$
 - 3. $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$
 - 4. $f(n) = \mathbf{o}(g(n))$ and $g(n) = \mathbf{o}(h(n))$ imply $f(n) = \mathbf{o}(h(n))$
 - 5. $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ imply $f(n) = \omega(h(n))$

Common Complexity Functions

- Constant Time
 - 1. An algorithm is said to be constant time if the value of f(n) is bounded by a value that does not depend on the size of input.
 - 2. Computational time is constant
 - 3. Eg: O(1)
- Logarithmic Time
 - 1. An algorithm is said to be logarithmic time if $f(n) = O(\log n)$
- Linear Time
 - 1. If f(n) = O(n), then the algorithm is said to be linear time.
- Quadratic Time
 - 1. If $f(n) = O(n^2)$, then the algorithm is said to be quadratic time.
- Polynomial Time
 - 1. If $f(n) = O(n^k)$, then the algorithm is said to be polynomial time.
- Exponential Time
 - 1. If $f(n) = O(2^n)$, then the algorithm is said to be exponential time.
- Factorial Time
 - 1. If f(n) = O(n!), then the algorithm is said to be factorial time

Running Time Comparison (Classifying functions by their asymptotic growth rate)

- Logarithmic functions are very slow
- Exponential functions and factorial functions are very fast growing

n	log n	n	n log n	n ²	n ³	2 ⁿ	n!
10	3.3	10	3.3 x 10	10^{2}	10^{3}	10^{3}	3.6×10^{60}
10 ²	6.6	10 ²	6.6×10^2	10 ⁴	10^6	1.3 x 10 ³⁰	9.3 x 10 ¹⁵⁷
10 ³	10	10 ³	10 x 10 ³	10^{6}	10^{9}		•
10 ⁴	13	10 ⁴	13 x 10 ⁴	10 ⁸	10 ¹²		
10 ⁵	17	10^5	17 x 10 ⁵	10^{10}	10 ¹⁵		
10^{6}	20	10^6	20 x 10 ⁶	10 ¹²	10^{18}	•	•

 $O(1) < O(\log n) < O(n) < O(n \log n) < O(n^k) < O(2^n) < O(n!)$

• Recurrence Relations

- A recurrence is an equation or inequality that describes a function in terms of its values on smaller inputs.
- There are several methods for solving recurrence relation
 - 1. Iteration Method
 - 2. Recursion tree Method
 - 3. Substitution Method
 - 4. Master's Method
- Recursion Tree Method
 - It is the pictorial representation of iteration method, which is in the form of a tree.
- Master's Method

• Solve the following recurrence relation using Iteration method.

```
1. T(n) = 1 + T(n-1)
        T(n)
                = 1 + T(n-1)
                 =1 + 1 + T(n-2) = 2 + T(n-2)
                = 2 + 1 + T(n-3) = 3 + T(n-3)
                                                 k<sup>th</sup> term
                = k + T(n-k)
                                                 Assume n-k=1 \rightarrow k=n-1
                = n-1 + T(n-(n-1))
        T(n)
                = n-1 + T(1) = O(n) + O(1)
                                                  = O(n)
2. T(2^k) = 3 T(2^{k-1}) + 1
    T(1) = 1
3. T(n) = T(n/3) + n
4. T(n) = 3 T(n/4) + n
5. T(n) = T(n/2) + 1
6. T(n) = 4 T(n/2) + n^2
7. T(n) = 4 T(n/3) + n
   T(n) = 2T(n/2) + 2
                                 if n>2
                                 if n=2
         =1
                                T(1)=1
9. T(n) = 2 T(n/2) + n
10. T(n) = 2
                                 if n=1
    T(n) = 2T(n/2) + 2n + 3
                                 Otherwise
11. T(2^k) = 3T(2^{k-1}) + 1
                                 T(1) = 1
```

Solve the following recurrence relation using Recursion Tree method.

1.
$$T(n) = 2 T(n/2) + n^2$$

2. $T(1) = 1$
 $T(n) = 3 T(n/4) + cn^2$

- 3. $T(n) = 3T(n/4) + n^2$
- 4. T(n) = 2 T(n/10) + T(9n/10) + n

Assume constant time for small value of n

- 5. T(n) = 3 T(n/3) + c n
- 6. T(n) = 4 T(n/2) + n
- 7. T(n) = T(n/3) + T(2n/3) + n
- 8. T(n) = 2 T(n-1) + c
- 9. $T(n) = 8 T(n/2) + n^2$
- 10. T(n) = 3T(n/2) + n
- 11. $T(n) = T(n/2) + n^2$
- Solve the following recurrence relation using Master's method.
 - 1. $T(n) = 3 T(n/2) + n^2$
 - 2. $T(n) = 4 T(n/2) + n^2$
 - 3. $T(n) = T(n/2) + n^2$
 - 4. $T(n) = 2^n T(n/2) + n^n$
 - 5. T(n) = 16 T(n/4) + n
 - 6. $T(n) = 2 T(n/2) + n \log n$
 - 7. $T(n) = 2 T(n/2) + n/\log n$
 - 8. $T(n) = 2 T(n/4) + n^{0.51}$
 - 9. T(n) = 0.5 T(n/2) + 1/n
 - 10. $T(n) = 6 T(n/3) + n^2 \log n$
 - 11. $T(n) = 64 T(n/8) n^2 \log n$
 - 12. $T(n) = 7 T(n/3) n^2$
 - 13. $T(n) = 4 T(n/2) + \log n$
 - 14. $T(n) = \sqrt{2} T(n/2) + \log n$
 - 15. $T(n) = 2 T(n/2) + \sqrt{n}$
 - 16. T(n) = 3 T(n/2) + n
 - 17. $T(n) = 3 T(n/3) + \sqrt{n}$
 - 18. T(n) = 4 T(n/2) + c n
 - 19. T(n) = 9 T(n/3) + n
 - 20. T(n) = T(2n/3) + 1
 - 21. $T(n) = 3 T(n/4) + n \log n$
 - 22. $T(n) = 2 T(n/2) + n \log n$
 - 23. $T(n) = 8 T(n/2) + \Theta(n^2)$
 - 24. $T(n) = 7 T(n/2) + \Theta(n^2)$
 - 25. T(n) = 2 T(n/4) + 1
 - 26. $T(n) = 2 T(n/4) + \sqrt{n}$
 - 27. T(n) = 2 T(n/4) + n
 - 28. $T(n) = 2 T(n/4) + n^2$
 - 29. $T(n) = T(n/2) + \Theta(1)$
 - 30. $T(n) = 4 T(n/2) + n^2 \log n$

Arithmetic Progression

- Series: a, a+d, a+2d, a+3d....a+(n-1)d
- nth term: a+(n-1)d
- sum of first n terms:

$$S_n = rac{n}{2} \left[2a + (n-1)d
ight] \qquad ext{or} \qquad S_n = rac{n}{2} \left[T_1 + T_n
ight] \qquad ext{or} \qquad S_n = n imes ext{(middle term)}.$$

Geometric progression

- Series: a, ar, ar², ar³.....arⁿ⁻¹
 nth term: arⁿ⁻¹
- sum of first n terms:

$$\sum_{k=0}^{n-1} (ar^k) = a \left(\frac{1 - r^n}{1 - r} \right)$$

sum of infinite terms:

$$\sum_{k=0}^{\infty} (ar^k) = a\left(\frac{1}{1-r}\right)$$